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Abstract

We present a radically different approach to the recovery
of the three dimensional geometric and reflectance proper-
ties of a surface from image data. We pose the problem in
a Bayesian framework, and proceed to infer the parame-
ters of the model describing the surface. This allows great
flexibility in the specification of the model, in terms of how
both the geometrical properties and surface reflectance are
specified. In the usual manner for Bayesian approaches it
requires that we can simulate the data that would have been
recorded for any state of the model in order to infer the
model. The theoretical aspects are thus very general. We
present results for one type of surface geometry (the trian-
gular mesh) and for the Lambertian model of light scatter-
ing. Our framework also allows the easy incorporation of
data from multiple sensing modalities.

1. Introduction

We present a radidcally different approach to the re-
covery of 3D geometry and surface reflectance information
than those usually considered in computer vision, one that
allows surface recovery from images taken under widely
varying lighting conditions and using different cameras.
This enables, for example, surface inference from images
from different satellites, or inference using images from
both satellites and planetary rovers. The two most com-
monly used conventional methods are shape-from-stereo
and shape-from-shading.

In shape-from-stereo[7], correspondence matches are
made between discrete points in the different images (using
the epipolar constraint). Knowlege of the camera viewing
geometry enables these matches to be used to recover a set
of points in 3D space which lie on the surface. These points
are then connected to form a representation of the surface.

In shape-from-shading[3] the gradients of the image in-

tensities are directly related to the surface gradients. In-
tegrating from a specified boundary condition enables a
height value (more strictly, a distance from the camera
value) to be associated with each pixel in the image.

Both of these methods have a number of drawbacks.
In shape-from-stereo the density of the points is unknown
a-priori and is dependent on the number of distinct point
matches found. It can also be unclear how to join these
points to form a surface.

In shape-from-shading the density of points is fixed at
the image resolution. Shape-from-shading is difficult for
surfaces where the surface reflectance properties are spa-
tially varying. In both of these methods it is difficult to
incorporate new observations into the surface estimation.

When the image formation process in linear, a Bayesian
approach to surface reconstruction is given in [6].

In our approach webegin by specifying the surface
model, both the geometrical aspects and the surface re-
flectance properties. Thus we may choose the level of de-
tail of our model representation to suit our final purpose
and on the basis of the data available. We may also refine
the representation at a later time if more or higher resolu-
tion data becomes available. Commonly used models for
the surface geometry include triangulated meshes and B-
spline surfaces. In this paper we discuss only the triangu-
lated mesh surface representation, and we limit the surface
to be a height field, assigning the(x; y) coordinates of the
vertices and learning only thez-values (heights).

Regarding how the surface reflects light, many standard
models of light reflection are known, at increasing levels
of complexity[5, 4]. The simplest model commonly used
is that of Lambertian, or perfectly diffuse reflection. This
model has a single parameter, the (wavelength dependent)
albedo. More complex models specify further how the bi-
directional reflectance function varies with the illumination
and viewing geometry, and incorporate effects such as a
specular component, the “hot spot” and models of surface
roughness. Any parameterised model can be used in our
framework; here we present results only for the Lambertian



model.
Thus we have posed the surface reconstruction problem

as the problem of estimating the parameters of a surface
model from image data. The estimation of model param-
eters from data is best solved using Bayesian methods[1],
and the approach taken is given in the following sections.

2. Bayesian estimation for surface model pa-
rameters

The specific form of the general surface model that we
consider here is parameterised by a set of heights and a set
of albedos, and the triangulation of these heights to form
the surface. We do not consider here the estimation of the
camera parameters, nor the parameters of the illumination
incident on the surface; these are assumed known. The es-
timation of the camera parameters will be considered in a
forthcoming paper.

Bayes theorem states that

p(h; �jI1 : : : In) / p(I1 : : : Injh; �)p(h; �)

whereh; � is the vector of heights and albedos andIi is the
image data. This states that that the posterior distribution of
the heights and the albedos is proportional to the likelihood
– the probability of observing the data given the heights and
albedos – multiplied by the prior distribution on the heights
and albedos.

Consider first the likelihood. We make the usual assump-
tion that the differences between the observed data and the
data synthesised from the model have a zero mean, Gaus-
sian distribution, and also assume that the images compris-
ing the data are conditionally independent. This gives
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where Îi(h; �) denotes the image synthesised from the
model,�2e is the noise variance and the summation is over
the pixels.

The prior distribution is also assumed to be Gaussian,
and determined by the integral value of the squares of the
surface curvature,
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The partial derivatives are approximated by finite differ-
ences of the height and albedo values. The coefficients of
h(i; j)� h(i+ p; j + q) from c(x; y) summed over the sur-
face give the entries in the prior inverse covariance matrix.
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This prior is placed over the height variables,h, but the
albedos are only defined over the range[0 � 1]. Because
of this we put the gaussian prior for the albedos over trans-
formed variables, where

�! log(�0=(1� �0)) (1)

Forming the prior covariance matrix in this way ensures
that it is positive-definite.

Consider the negative log-posterior. For a single image
we have
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and this is a nonlinear function ofh; �. The MAP estimate
is that value ofh; � which minimisesL(h; �).

In the case of images with no shadows or visible occlu-
sions which we consider here, the log-posterior is in general
unimodal and gradient methods can be applied for minimis-
ingL(h; �). We linearisêI(h; �) about the current estimate,

h0; �0 and replacêI(h; �) by Î(h0; �0) + D
�
h� h0
�� �0
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whereD is the matrix of derivatives evaluated ath0; �0.
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The minimisation of equation 2 then becomes the minimi-
sation of the quadratic form
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We mimisie this quadratic form using the conjugate gradi-
ent method. This finds the minimum of the local linear ap-
proximation. At the minimum we recomputêI andD and
minimiseL(h; �) (equation 2) iteratively. We found that
typically convergence occurs in four to five iterations.

Thus to find the MAP estimate requires that we can com-
puteÎ andD for any values ofh; �. We discuss this compu-
tation in some detail in the next section. Here it is sufficient
to note that while forminĝI using only object space com-
putation (see section 3) is computationally expensive, we
can computeD at the same time for little additional compu-
tation. This makes the process described above a practical
one. Convergence can also be accelerated by using a multi-
grid approach.

At convergence we compute the new inverse covariance
matrix, (��1)0 = ��1 + DTD=�e. This is then used as
the prior inverse covariance matrix when new image data
of the same surface is obtained, enabling a recursive update
and integration of data recorded at different times. The pos-
terior inverse covariance matrix gives information about the
uncertainty of the estimated surface.



αs

αv

β

n

z

zv

>

>

>
s

v
i0,i1

v
i1,i2

vi0,i2

p
i1

p
i2

p
i0

Figure 1. Geometry of the triangular facet, il-
lumination direction and viewing direction

3. Forming the image and the derivative matrix

The task of forming an image,̂I , given a surface descrip-
tion, h; �, and camera and illumination parameters is the
area of computer graphics known as rendering[2]. How-
ever, because of their target application (producing images
for peopleto look at), current computer graphics systems
which render from triangulated meshes make one funda-
mental assumption which leaves them unsuitable here. This
assumption is that, when projected into the image plane,
each triangle making up the surface is much larger than a
pixel, so that the approximation that any given pixel is il-
luminated by light from only one triangular facet is reason-
able. This allows images which are visually appealing to
be computed quickly, but can lead to aliasing artefacts at
the edges of the triangles, and produce inaccurate images if
the projected triangles are much smaller than the pixels. In
the computer graphics literature these are known asimage
spacealgorithms.

For our system we implemented a renderer for triangular
meshes which does all computation inobject space. When
the light from a triangle is projected into a pixel, its contri-
bution to the brightness of that pixel is weighted by the frac-
tion of the area of the triangle which projects into the pixel.
This produces perfectly anti-aliased images and allows an
image of any resolution to be produced from a mesh of ar-
bitrary density, as required when the system performing the
surface inference may have no control over the image data
gathering.

Figure 1 shows a single triangular facet from the surface
model.ẑs is the unit vector in the direction to the illumina-
tion, ẑv the direction to the camera (viewing direction) and
n̂ is the surface normal. LetIs be the intensity of the direct
illumination andIa be the intensity of the ambient light.
The flux reflected from this facet into the spatial angle�

in the viewing direction is

� = E(�s)r(�s; �v; �)�
 (3)

whereE(�s) is the incident flux andr() is the bi-directional
reflectance function.�
 = d=R2 whereR is the distance
from the facet to the sensor andd is the area of the aperture.

E(�s) = �A(Isn � ẑs + Ia); A =
1
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The derivative of� with respect to� is clear from equa-
tions 3 and 4 and the logarithmic transformation given in
equation 1. The derivative with respect to the z-component
of pi0 is more complex, being made up of a number of com-
ponents.
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If shadows are present on the surface and visible occlusions
are present in the image then these must be taken into ac-
count when computing the derivatives. In fact, these non-
local derivatives are very informative as to the shape of the
surface.

For the case of Lambertian reflectance considered here,
r() = cos�v, and with no shadows or occlusions the deriva-
tive with respect to the height is
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where

g = Is(ẑv cos�s + ẑs cos�v � n̂ cos�s cos�v) + Iaẑv

If the triangle does not project entirely within a pixel then
the area of overlap must be considered. When forming the
image, as mentioned above, the flux� must be weighted
by the fraction of the triangle’s area which projects into the
pixel. When computing the contribution to the derivative of
a pixel from the vertices of that triangle, the derivative of
the area fraction with respect to thezi must be included.

Note that the derivatives in this section assume a per-
fectly focused image. If blurring is present then both the
synthesised image formation and the derivative computa-
tions are modified.

4. Results

Figure 2 shows a low-resolution image of a synthetic sur-
face (the image is45� 45 pixels). Four such images, with
differing lighting and camera orientations were produced
and used as the data imagesI . It is easy to show that at
least three images of each point on the surface are required.



Informally this can be seen by noting that we must recover
two components of the surface normal and the albedo at
each point.

Starting from a mesh with all zero heights and all albedos
set to 0.5, the conjugate gradient scheme described above
was used to infer the surface shown in figure 3. The surface
is of dimension64 � 64 heights and the same number of
albedos. The curvature based prior was also used. Note
that because of the near vertical viewpoint there is only a
very weak dependence on the mean distance to the surface.
To overcome this we assumed known boundary conditions.
Also note that this is a dense triangluation – when projected
into the pixel grid of figure 2 many triangles fall into one
pixel. Thus we infer a super-resolved surface – a pixel lying
on the rim of the crater does not imply a planar region in
the inferred surface, rather, we infer a surface where highly
curved regions may project into a single pixel.

Error maps at the end of 5 minimisations are shown in
figure 4. Note the vertical scales compared with figure 3.
The reconstruction is extremely accurate, with most errors
being in the regions of high curvature. The images synthe-
sised from the infered surface are visually indistinguishable
from the data images (see figure 2).

Figure 2. Low resolution image of the real sur-
face (left) and the inferred surface (right)
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Figure 3. Heights (left) and albedos (right) for
the inferred surface
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Figure 4. The errors between the inferred and
the true surface (Heights (left) and albedos
(right)

5. Conclusions and future extensions

We have developed a very general framework for the in-
ference of general surface geometry and reflectance mod-
els from image data, where the model choice is determined
by the physical properties of the surface we wish to infer.
We have demonstrated that for the case of a triangulated
surface and Lambertian reflectance the parameters of a sur-
face model, namely the heights and albedos, can be inferred
from a set of image data. We have developed a framework
that allows easy inclusion of future data observed from the
same surface, and easy incorporation of data from other
sensing modalities.

Future developments will include the addition of the
ability to correctly compute the image and its derivatives
when shadows and visible occlusions are present. Ex-
tensions to other surface representations and other surface
topologies and more realistic reflection functions will also
be studied. Limits to the accuracy of the surface reconstruc-
tion will also be explored.
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